## C_21 Key and Chapter 8 Review

## Chapter 8 Review Worksheet

Name: $\qquad$

1. Write in logarithmic form:
a) $5^{x}=27$
b) $x^{w}=t$
2. Write in exponential form:
a) $\log _{6} r=t$
b) $\log _{b} c=a$
3. Use logarithm laws to re-write each expression so it uses only one "log".
a) $\log 5+\log r$
b) $\log x-\log 11$
c) $\frac{\log t}{\log r}$
4. Evaluate without using your calculator:
a) $\log _{5} 5^{3}$
b) $\log _{8} 8^{4}$
c) $\log _{x} x^{2}$
d) $\log 10^{8.2}$
e) $10^{\log 4}$
f) $\log _{2} 1$
5. Write an equation and solve it to find the amount of money you have after 5 years, if you invest $\$ 2000$ and receive $7 \%$ annual interest, compounded quarterly.
6. You find 30 fruit flies in your kitchen. Suppose their population triples every 4 days. Write and solve an equation to find how many days it takes until there are 1500 fruit flies.
7. Suppose that a laboratory has 50 g of a radioactive element that has a half-life of 2 weeks. How long will it take until this sample is reduced to 4 g ?
8. You've been in an earthquake measuring 6.4 on the Richter scale and want to figure out how much more intense that is than a 3.9 one a friend was in. Write and solve the equation to do this.
9. State the domain and the $x$-intercept for the graph of: $y=\log _{4}(2 x-5)-2$
10. For every 100 meters that a balloon rises, the atmospheric pressure is reduced by $1 \%$. At what balloon height is the atmospheric pressure $15 \%$ of the pressure at the earth's surface?
11. Solve for $x$.
a) $\log _{3} x=-4$
b) $\log x-\log 7=\log 18$
c) $\log _{4} x+\log _{4}(x+1)=2$
d) $3^{x-2}=5^{2 x+1}$
12. Evaluate: $\log _{3} 59.2$
13. Determine the domain of $y=\log (-x)$.
14. The point $(2,9)$ is on the graph of $y=b^{x}$. What point must be on the graph of $y=\log _{b} x$ ?
15. Solve: $\quad \log _{2}(3-2 x)-\log _{2}(2-x)=\log _{2} 3$
16. If $\log M N=8$ and $\log M=-4$, determine $N$.

17a) Fill in the table below and use the values to sketch the graph of $y=\log _{3} x$ onto the grid below. Sketch in its asymptote.

$$
y=\log _{3} x
$$


domain
asymptote equation
b) Suppose that $y=\log _{3} x$ is changed to $y=4 \log _{3}(x-1)$. What two transformations occur?
c) Transform the points you found above for $y=\log _{3} x$ and fill in this new table

| $x$ | $y$ |
| :--- | :--- |
|  |  |
|  |  |
|  |  |
|  |  | for the equation $y=4 \log _{3}(x-1)$.

d) Sketch the graph of $y=4 \log _{3}(x-1)$ onto the grid above. Include its asymptote.
e) For $y=4 \log _{3}(x-1)$ what are its:
domain
asymptote equation

Answers
1a) $\log _{5} 27=x$
b) $\log _{x} t=w$
2a) $6^{t}=r$
b) $b^{a}=c$
3a) $\log 5 r$
b) $\log \left(\frac{x}{11}\right)$
c) $\log _{r} t$
4a) 3
b) 4
c) 2
d) 8.2
e) 4
f) 0
5. $A=2000\left(1+\frac{0.07}{4}\right)^{20}=\$ 2829.56$
$6.1500=30(3)^{1 / 4}$
$50=(3)^{1 / 4} \quad$ (divide both sides by 30 , to isolate exponential term
$\log 50=\frac{t}{4} \log 3$ (log both sides; use power law)
$4 \log 50=t \log 3 \quad$ (eliminate fraction)

$$
t=\frac{4 \log 50}{\log 3} \dot{\doteq} 14.24 \text { days }
$$

(divide and evaluate on calculator)
7. $4=50(0.5)^{1 / 2}, t=7.3$ weeks
(Solving process is very similar to \#6.)
8. $I=I_{0}(10)^{(6.4-3.9)}$, so $I \dot{\doteq} 316 I_{0}$.

The stronger earthquake is about 316 times more powerful than the weaker one.
9. Domain: $x>\frac{5}{2}$

Recall, argument must be greater than zero:

$$
2 x-5>0, \quad x>\frac{5}{2}
$$

$x$-intercept: $\quad(10.5,0)$
$0=\log _{4}(2 x-5)-2 \quad$ (let $y=0$ )
$2=\log _{4}(2 x-5) \quad$ (isolate log term)
$4^{2}=2 x-5 \quad$ (change to exponential form)
$x=10.5 \quad$ (solve)
10. $15=100(0.99)^{h / 100}$. Solve, $h=19000 \mathrm{~m}$

11a) $x=3^{-4}=\frac{1}{81} \quad$ b) $x=126$
c) $\quad \log _{4}\left(x^{2}+x\right)=2$,

$$
4^{2}=x^{2}+x
$$

$$
x^{2}+x-16=0
$$

Since this doesn't factor, solve using the quadratic formula. We get $x=3.53$ and $x=-4.53$. We reject $-4.53, x=3.53$ is the only solution.
d) $(x-2) \log 3=(2 x+1) \log 5$
( $\log$ both sides, use power rule)
$x \log 3-2 \log 3=2 x \log 5+1 \log 5$ (distribute)
$x \log 3-2 x \log 5=\log 5+2 \log 3$ (collect $x$ terms on one side)
$x(\log 3-2 \log 5)=\log 5+2 \log 3$
(factor out $x$ as GCF)
$x=\frac{\log 5+2 \log 3}{\log 3-2 \log 5}$
(divide)
$x=-1.795372332 \approx-1.80$ (evaluate on calculator)
12. Use change of base law:

$$
\log _{3} 59.2=\frac{\log 59.2}{\log 3}=3.71
$$

13. We know the argument must be greater than 0: $\quad-x>0$
Divide both sides by -1 , to get $x<0$.
14. $(9,2)$
(Because these are inverses of one another.)
15. no solution (reject $x=3$ )

16

$$
\text { 6. } \begin{array}{rlrl}
\log M N & =8 & \log N & =12 \\
\log M+\log N & =8 & N & =10^{12} \\
-4+\log N & =8 &
\end{array}
$$

## Chapter 8 Review Worksheet

Name: $\qquad$

1. Write in logarithmic form:
a) $5^{x}=27$
b) $x^{w}=t$
$\log _{5} 27=x$
$\log _{x} t=w$
2. Write in exponential form:
a) $\log _{6} r=t$
b) $\log _{b} c=a$
$b^{a}=C$
3. Use logarithm laws to re-write each expression so it uses only one "log".
a) $\log 5+\log r$
$=\log (5 r)$
(Product Law)
b) $\log x-\log 11=\log \left(\frac{x}{11}\right)$
(Quotient Law)
c) $\frac{\log t}{\log r}=\log _{r} t$
(Change of Base Law)
4. Evaluate without using your calculator:
a) $\log _{5} 5^{3}=3 \log _{5} 5 \quad$ (Power Law)
b) $\log _{8} 8^{4}=4 \log _{8} 8 \quad$ (Power Law)
$=3(1)$

$$
=4(1)
$$

$=3$
c) $\log _{x} x^{2}=2 \log _{x} x \quad$ (Pome lan)
d) $\log 10^{8.2}=8.2 \log 10$ (Power Law)

$$
=2(1)
$$

$$
=8.2(1)
$$

$$
=2
$$

$$
=8.2
$$

e) $10 \frac{\log 4}{\log }=4$

10 is being raised to the exponent that is able to change 10 into 4

$$
\Rightarrow 10^{\circ}=4
$$

5. Write an equation and solve it to find the amount of money you have after 5 years, if you invest $\$ 2000$ and receive $7 \%$ annual interest, compounded quarterly.

$$
\begin{aligned}
A & =2000(1+0.0175)^{20} \\
& =\$ 2829.56
\end{aligned}
$$

$\longrightarrow 4$ times a year

$$
\begin{aligned}
P & =2000 \\
i & =\frac{0.07}{4}=0.0175 \\
n & =4(5) \\
& =20 \text { pends }
\end{aligned}
$$

6. You find 30 fruit flies in your kitchen. Suppose their population triples every 4 days. Write and solve an equation to find how many days it takes until there are 1500 fruit flies.

$$
\begin{aligned}
& A=\left.30(3)^{t / 4}\right|_{t / 4} ^{\log 50=\log _{3} t / 4} \\
& \begin{aligned}
4 \times \log 50 & =\left(\frac{t}{4} \log 3\right) \times y \\
4 \log 50 & =t \log 3
\end{aligned} \\
& A_{0}=30 \\
& \frac{1500}{30}=\frac{30}{306}(3)^{t / 4} \\
& 50=3^{t / 4} \\
& t=\frac{4 \log 50}{\log 3}=14.24 \text { days }
\end{aligned}
$$

7. Suppose that a laboratory has 50 g of a radioactive element that has a half-life of 2 weeks. How long will it take until this sample is reduced to 4 g ?

$$
\begin{aligned}
\frac{4}{50} & =\frac{50}{50}\left(\frac{1}{2}\right)^{t / 2} \\
\frac{4}{50} & =\left(\frac{1}{2}\right)^{t / 2} \\
\log 0.08 & =\log (0.5)^{t / 2} \\
2 \times(\log 0.08) & =\left(\frac{t}{2} \log 0.5\right) \times 2 t \\
2 \log 0.08 & =t \log 0.5
\end{aligned} \quad \begin{aligned}
& A_{0}=50 \\
& b=\frac{1}{2} \\
& p=2 \text { weeks }
\end{aligned} \quad \begin{aligned}
& t=\frac{2 \log 0.08}{\log 0.5} \\
& t \doteq 7.3 \text { weeks }
\end{aligned}
$$

8. You've been in an earthquake measuring 6.4 on the Richter scale and want to figure out how much more intense that is than a 3.9 one a friend was in. Write and solve the equation to do this.

$$
\begin{aligned}
& I=I_{0} 10^{R-r} \\
& I=I_{0}(10)^{6.4-3.9} \\
& I=I_{0}(10)^{2.5} \\
& I=I_{0}(316.23)
\end{aligned}
$$

Yours is about 316 times more intase Than the earthquake the friend was in.

$$
\begin{aligned}
& \text { 9. State the domain and the } x \text {-intercept for the graph of: } y=\log _{4}(2 x-5)-2 \\
& \begin{aligned}
\operatorname{argumat} & >0 \\
2 x-5 & >0 \\
2 x & >5 \\
x & >\frac{5}{2}
\end{aligned} \quad D=\left\{x \left\lvert\, x>\frac{5}{2}\right., x \in \mathbb{R}\right\} \left\lvert\, \begin{aligned}
& x-\operatorname{intrcept}, \\
& 0=\log _{4}(2 x-5)-25 \\
& 2=\log _{4}(2 x-5) \\
& 4^{2}=2 x-5 \\
& 16=2 x-5
\end{aligned}\right.
\end{aligned}\left\{\begin{array}{l}
2 x=21 \\
x=\frac{21}{2} \\
(10,5,0)
\end{array}\right.
$$

10. For every 100 meters that a balloon rises, the atmospheric pressure is reduced by $1 \%$. At what balloon height is the atmospheric pressure $15 \%$ of the pressure at the earth's surface?

$$
\begin{aligned}
& A=A_{0}(b)^{t / p} \\
& 15=100(0.99)^{t / 100} \\
& 10015=(0.99)^{t / 100} \\
& 0.000 .15=\log (0.99)^{t / 100}
\end{aligned}
$$

11. Solve for $x$.
a) $\log _{3} x=-4$

$$
3^{-4}=x, \quad x=\frac{1}{3^{4}}=\frac{1}{81}
$$

$$
\int \text { Hey, that's my }
$$

favorite fraction!
b) $\log x-\log 7=\log 18$

$$
\begin{array}{lll}
\log \left(\frac{x}{7}\right) & =\log 18 \quad(\text { Quotient Lav }) & X_{x} \times\left(\frac{x}{7}\right)=(18) \times 7 \\
\Rightarrow \quad \frac{x}{7}=18 &
\end{array}
$$

c) $\log _{4} x+\log _{4}(x+1)=2$

$$
\begin{aligned}
\log _{4} x(x+1) & =2 \quad(\text { Product Law }) \\
4^{2} & =x(x+1) \quad\left\{\begin{array} { r l } 
{ \operatorname { l o g } _ { 4 } ( x + 1 ) = 2 } \\
{ x ^ { 2 } + x - 1 6 = 0 } \\
{ x = - \frac { 1 \pm \sqrt { 1 ^ { 2 - ( 4 ) ( 1 ) ( - 1 6 ) } } } { 2 ( 1 ) } } & { x = \frac { - 1 \pm \sqrt { 6 5 } } { 2 } } \\
{ 1 6 } & { = x ^ { 2 } + x }
\end{array} \left\{\begin{array}{l}
x=3.53 \\
\text { reject makes argument } \\
\text { negative }
\end{array}\right.\right.
\end{aligned}
$$

d) $3^{x-2}=5^{2 x+1}$

$$
x \log 3-2 \log 3=2 x \log 5+1 \log 5 \text { (distribut) }
$$

$$
x \log 3-2 x \log 5=\log 5+2 \log 3
$$

$$
\begin{aligned}
& x=\frac{\log 5+2 \log 3}{\log 3-2 \log 5} \\
& x=-1.79537 \ldots \\
& x=-1.80
\end{aligned}
$$

$$
x(\log 3-2 \log 5)=\log 5+2 \log 3
$$

$$
\text { 12. Evaluate: } \begin{aligned}
\log _{3} 59.2 & =\frac{\log 59.2}{\log 3} \\
& =3.71
\end{aligned}
$$

13. Determine the domain of $y=\log (-x)$.

Argument $>0$

$$
\begin{aligned}
\frac{-x}{-1} & >0 \\
x & <0
\end{aligned}
$$

$$
D=\{x \mid x<0, x \in \mathbb{R}\}
$$

14. The point $(2,9)$ is on the graph of $y=b^{x}$. What point must be on the graph of $y=\log _{b} x$ ?

Since then are inverses, $(9,2)$ is on
15. Solve: $\quad \log _{2}(3-2 x)-\log _{2}(2-x)=\log _{2} 3$

$$
\begin{aligned}
& \log _{2}\left(\frac{3-2 x}{2-x}\right)=\log _{2} 3 \text { (Quotient Law) } \\
& \Rightarrow \frac{(2-x)}{1}\left[\frac{3-2 x}{2-x}\right]=[3](2-x) \\
& 3-2 x=3(2-x) \\
& 3-2 x=6-3 x \\
& 3-2 x+3 x=6 \\
& x=6-3 \\
& x=3 \\
& \text { But, if } x=3 \text { is } \\
& \text { substituted in, it make } \\
& \text { negative argumats. } \\
& \Rightarrow \text { no solution }
\end{aligned}
$$

16. If $\log M N=8$ and $\log M=-4$, determine $N$.

$$
\begin{array}{rlr}
\log M N= & \log M+\log N & (\text { Product LaN }) \\
= & -4+\log N & (\text { substitution }) \\
8= & -4+\log N & \\
12= & \log N & \\
& 10^{12}=N \quad N=10^{12}
\end{array}
$$

17a) Fill in the table below and use the values to sketch the graph of $y=\log _{3} x$ onto the grid below. Sketch in its asymptote.

grid below. Sketch in its asymptote.

$$
y=\log _{3} x
$$

choose
powers
of 3 $\left\{\begin{array}{c|c|}\hline x & y \\ \hline 1 / 3 & -1 \\ \hline 1 & 0 \\ \hline 3 & 1 \\ \hline 9 & 2 \\ \hline\end{array}\right.$

$$
\begin{aligned}
& \log _{3}\left(\frac{1}{3}\right)=-1 \\
& \log _{3} 1=0 \\
& \log _{3} 3=1 \\
& \log _{3} 9=2
\end{aligned}
$$


domain $\{x \mid x>0, x \in \mathbb{R}\}$
asymptote equation $\quad x=0$
b) Suppose that $y=\log _{3} x$ is changed to $y=4 \log _{3}(x-1)$. What two transformations occur? VS4, right I
c) Transform the points you found above for $y=\log _{3} x$ and fill in this new table
 for the equation $y=4 \log _{3}(x-1)$.
d) Sketch the graph of $y=4 \log _{3}(x-1)$ onto the grid above. Include its asymptote.
e) For $y=4 \log _{3}(x-1)$ what are its:
domain $\quad\{x \mid x>1, x \in \mathbb{R}\}$
asymptote equation $\quad X=1$

