C_21 Key and More Solving Practice

Practice Solving Logarithmic \& Exponential Equations

1. Solve each equation for x.
a) $6^{3 x-6}=1$
b) $4^{8 x}=\frac{1}{16}$
c) $x^{4 / 5}=23$
d) $3^{x}=125$
e) $65=e^{7 x} \quad$ (e is a number, just like π is a number)
f) $7\left(2^{x}\right)=5^{x-2}$
g) $17^{x+4}=196^{3 x-2}$
2. Solve these logarithmic equations for x.
a) $\log _{3}(4 x-1)=2$
b) $\log _{5} 24-\log _{5} 2=\log _{5} 3 x$
c) $\log (8+2 x)=\log (7 x-2)$
d) $\log _{2 x} 64=2$
e) $\log _{x} 125=3$
f) $\log x+\log 12=\log 8$
f) $\log x+\log 12=\log 8$

Unit 3 - Exponents and Logs Page 2
3. Solve these logarithmic equations for x.
a) $x \log 26=\log 13$
b) $\log (5 x+4)=3$
c) $\log _{4} 188=x$
d) $\log 42=\log 14-\log x$
e) $\ln x-\ln 4=\ln 5$ ("ln" means $\log _{e}$)
f) $\ln x-\ln 4=5$ (This is NOT the same question as part e)
g) $\log _{2}\left(x^{2}+8\right)-\log _{2} 6=\log _{2} x$
h) $\log _{5}(3 x+1)+\log _{5}(x-3)=3$
i) $\log _{2}(x-2)+\log _{2} x=\log _{2} 3$
j) $\log _{5}(x-6)=1-\log _{5}(x-2)$
k) $2 \log _{3} x-\log _{3}(x+3)-3=0$

1) $\log _{5}(x+1)+\log _{5}(x-3)=1$

Solutions

1. Solve each equation for x.
a) $6^{3 x-6}=1$

$$
\begin{aligned}
6^{3 x-6} & =6^{0} \\
\Rightarrow 3 x-6 & =0 \\
3 x & =6 \\
x & =2
\end{aligned}
$$

b) $4^{8 x}=\frac{1}{16}$

$$
\begin{aligned}
4^{8 x} & =\frac{1}{4^{2}} \\
4^{8 x} & =4^{-2} \\
\Rightarrow \quad 8 x & =-2 \\
x & =-2 / 8 \\
x & =-1 / 4
\end{aligned}
$$

c) $x^{4 / 5}=23$

$$
\begin{aligned}
\left(x^{4 / 5}\right)^{5 / 4} & =(23)^{5 / 4} \\
x & =50.37
\end{aligned}
$$

d) $3^{x}=125$

$$
\begin{aligned}
\log 3^{x} & =\log 125 \\
x \log 3 & =\log 125 \\
x & =\frac{\log 125}{\log 3} \\
x & =4.39
\end{aligned}
$$

$$
\left\{\begin{aligned}
\text { OR } \log 6^{3 x-6} & =\log 1 \\
(3 x-6) \log 6 & =\log 1 \\
3 \times \log 6-6 \log 6 & =\log 1 \\
3 x \log 6 & =\log 1+6 \log 6 \\
\times(3 \log 6) & =\log 1+6 \log 6 \\
x & =\frac{\log 1+6 \log 6}{(3 \log 6)}=2
\end{aligned}\right.
$$

$$
\log 4^{8 x}=\log 1 / 6
$$

$$
8 x \log 4=\log 1 / 6
$$

$$
\times(8 \log 4)=\log 1 / 4
$$

$$
x=\frac{\log 1 / 6}{(8 \log 4)}
$$

$$
x=-1 / 4
$$

(OR Change form:

$$
\begin{aligned}
& \log _{3} 125=x \\
& x=\frac{\log 125}{\log 3} \quad \begin{array}{c}
\text { (change } \\
\text { of } \\
\text { Base } \\
\text { Law }
\end{array} \\
& x=4.39
\end{aligned}
$$

$$
\begin{aligned}
& \text { e) } 65=\text { eft } \quad(e \text { is a number, just like } \pi \text { is a number }) O R \\
& \log 65=\log e^{7 x} \\
& \log 65=7 \times \log e \\
& \log 65=x(7 \log e) \\
& x=\frac{\log 65}{(7 \log e)}=0.60 \\
& \text { Change form } \\
& \log _{e} 65=7 x \\
& \frac{\log 65}{\log e}=7 x \\
& x=\frac{\left(\frac{\log 65}{\log e}\right)}{7} \dot{x}=0.60 \\
& \text { f) } 7\left(2^{x}\right)=5^{x-2} \\
& \log \left[7\left(2^{x}\right)\right]=\log \left(5^{x-2}\right) \\
& \log 7+\log 2^{x}=(x-2)^{x} \log 5 \\
& \log 7+\underbrace{x \log 2}=x \log 5-2 \log 5 \\
& x \log 2-x \log 5=-2 \log 5-\log 7 \\
& x(\log 2-\log 5)=-2 \log 5-\log 7 \\
& x=\frac{(-2 \log 5-\log 7)}{(\log 2-\log 5)} \doteq 5.64 \\
& \text { g) } 17^{x+4}=196^{3 x-2} \\
& \log 17^{x+4}=\log 196^{3 x-2} \\
& (x+4) \log 17=(3 x-2)^{\log 196} \\
& x \log 17+4 \log 17=\underbrace{3 x \log 196}-2 \log 196 \\
& x \log 17-3 x \log 196=-2 \log 196-4 \log 17 \\
& x(\log 17-3 \log 196)=-2 \log 196-4 \log 17 \\
& x=\frac{(-2 \log 196-4 \log 17)}{(\log 17-3 \log 196)} \doteq 1.68
\end{aligned}
$$

$$
(\log 17-3 \log 196)
$$

Unit 3 - Exponents and Logs Page 6
2. Solve these logarithmic equations for x.
a) $\log _{3}(4 x-1)=2$

$$
\begin{aligned}
3^{2} & =4 x-1 \\
9 & =4 x-1 \\
\frac{10}{4} & =\frac{4 x}{4}
\end{aligned}
$$

b) $\log _{5} 24-\log _{5} 2=\log _{5} 3 x$

$$
\begin{aligned}
\log _{5}\left(\frac{24}{2}\right) & =\log _{5} 3 x \\
\log _{5}(12) & =\log _{5} 3 x \\
\Rightarrow \frac{12}{3} & =\frac{3 x}{3} \quad x=4
\end{aligned}
$$

c) $\log (8+2 x)=\log (7 x-2)$

$$
\begin{aligned}
\Rightarrow \quad 8+2 x & =7 x-2 \\
\frac{-5 x}{-5} & =\frac{-10}{-5} \\
x & =2
\end{aligned}
$$

d) $\log _{2 x} 64=2$

$$
\begin{aligned}
(2 x)^{2} & =64 \\
\frac{4 x^{2}}{4} & =\frac{64}{4} \\
x^{2} & =16 \\
x & = \pm 4, \quad \text { but only } \quad x=4 \text { is valid, }
\end{aligned}
$$

e) $\log _{x} 125=3$

$$
\begin{gathered}
\sqrt[3]{x^{3}}=\sqrt[3]{125} \\
x=5
\end{gathered}
$$

f) $\log x+\log 12=\log 8$

$$
\begin{aligned}
\log (12 x) & =\log 8 \\
\Rightarrow \frac{12 x}{12} & =\frac{8}{12} \\
x & =\frac{8}{12}, x=\frac{2}{3}
\end{aligned}
$$

3. Solve these logarithmic equations for x.
a) $x \log 26=\log 13$

$$
\begin{aligned}
& x=\frac{\log 13}{\log 26} \\
& x=0.79
\end{aligned}
$$

b) $\log (5 x+4)=3$

$$
\begin{aligned}
10^{3} & =5 x+4 \\
1000 & =5 x+4 \\
996 & =5 x
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{996}{5} \\
& x=199.2
\end{aligned}
$$

c) $\log _{4} 188=x$

$$
\begin{aligned}
& x=\frac{\log 188}{\log 4} \quad(\text { Change of base law }) \\
& x=3.78
\end{aligned}
$$

d) $\log 42=\log 14-\log x$

$$
\begin{aligned}
\log 42 & =\log \left(\frac{14}{x}\right) \\
\Rightarrow 42 & =\frac{14}{x} \\
\frac{42}{42} x & =\frac{14}{42}
\end{aligned}
$$

e) $\ln x-\ln 4=\ln 5$ ("ln" means $\log _{e}$)

$$
\begin{array}{r}
\ln \left(\frac{x}{4}\right)=\ln 5 \\
\Rightarrow \frac{x}{4}=5 \\
x=20
\end{array}
$$

f) $\ln x-\ln 4=5$ (This is NOT the same question as part e)

$$
\begin{aligned}
\ln \left(\frac{x}{4}\right) & =5 \\
e^{5} & =\frac{x}{4} \\
x & =4 e^{5}, \quad x=593.65
\end{aligned}
$$

g) $\log _{2}\left(x^{2}+8\right)-\log _{2} 6=\log _{2} x$

$$
\begin{aligned}
\log _{2}\left(\frac{x^{2}+8}{6}\right) & =\log _{2} x \\
\Rightarrow \frac{x^{2}+8}{6} & =x \\
x^{2}+8 & =6 x \\
x^{2}-6 x+8 & =0 \\
(x-2)(x-4) & =0
\end{aligned}
$$

h) $\log _{5}(3 x+1)+\log _{5}(x-3)=3$

$$
\begin{aligned}
& \log _{5}[(3 x+1)(x-3)]=3 \\
& \log _{5}\left(3 x^{2}-9 x+x-3\right)=3 \\
& 5^{3}=3 x^{2}-8 x-3 \\
& 0=3 x^{2}-8 x-3-125
\end{aligned}
$$

$$
\left[\begin{array}{l}
3 x^{2}-8 x-128=0 \\
x=\frac{8 \pm \sqrt{64-(4)(3)(-128)}}{2(3)} \\
x=\frac{8 \pm \sqrt{64+1536}}{6} \\
x=\frac{8 \pm \sqrt{1600}}{6} \\
x=\frac{8 \pm 40}{6} \rightarrow x=\frac{48}{6}=8
\end{array}\right.
$$

reject,
i) $\log _{2}(x-2)+\log _{2} x=\log _{2} 3$

$$
\begin{aligned}
\log _{2}[(x-2)(x)] & =\log _{2} 3 \\
\log _{2}\left(x^{2}-2 x\right) & =\log _{2} 3 \\
\Rightarrow x^{2}-2 x & =3 \\
x^{2}-2 x-3 & =0 \\
(x+1)(x-3) & =0
\end{aligned}
$$

j) $\log _{5}(x-6)=1-\log _{5}(x-2)$

$$
\begin{gathered}
\log _{5}(x-6)+\log _{5}(x-2)=1 \\
\log _{5}[(x-6)(x-2)]=1 \\
\log _{5}\left(x^{2}-2 x-6 x+12\right)=1 \\
5^{\prime}=x^{2}-8 x+12 \\
0=x^{2}-8 x+7 \\
0=(x-1)(x-7)
\end{gathered}
$$

$$
x=7
$$

Unit 3 - Exponents and Logs Page 10
k) $2 \log _{3} x-\log _{3}(x+3)-3=0$

$$
\log _{3} x^{2}-\log _{3}(x+3)=3
$$

$$
\log _{3}\left(\frac{x^{2}}{x+3}\right)=3
$$

$$
3^{3}=\frac{x^{2}}{x+3}
$$

$$
27=\frac{x^{2}}{x+3}
$$

$$
27(x+3)=x^{2}
$$

1) $\log _{5}(x+1)+\log _{5}(x-3)=1$

$$
\begin{aligned}
& \log _{5} {[(x+1)(x-3)]=1 } \\
& \log _{5}\left(x^{2}-3 x+1 x-3\right)=1 \\
& 5^{\prime}=x^{2}-2 x-3 \\
& 0=x^{2}-2 x-8 \\
& 0=(x+2)(x-4)
\end{aligned}
$$

$$
\begin{aligned}
& 27 x+81=x^{2} \\
& 0=\frac{x^{2}-27 x-81}{2(1)} \\
& x=\frac{27 \pm \sqrt{(-27)^{2}-(4)(1)(-81)}}{2} \quad \pi-29.72
\end{aligned}
$$

$$
x=4
$$

